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Summary

VThis paper deals with some pitfalls linked with the sampling model based

on prior distribution and costs. First, a model is designed which encompasses

most of the existing Bayesian cost models. The efficiency of sampling plans

is investigated in a-numerical study. It is shown that under realistic assump-

tions, described by Dodge (1969) and Schilling (1982), sampling plans based

on prior distributions and costs are only efficient in an outlier model,

i.e. if almost all lots are of good quality and only a low number of lots,

denoted as outlier lots, have very poor quality. Furthermore, it is demon-

strated that for the Polya distribution a gain of sampling is linked with a

high percetage of rejections, i.e. when the prior distribution cost relation-

ship is such that less than 5% of the lots should be rejected sampling be-

comes inefficient
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1. Introduction

Attributes acceptance sampling plans are used throughout the world. Sets

of single, double and multiple sampling plans as well as sequential sampling

plans have been devised by different organizations. Most often they are risk-

based sampling plans, i.e. the plans are selected according to certain types

of consumer and producer risks as depicted by the operating characteristic

(OC). The majority of practitioners today are applying plans such as MIL-STD

IOSD because they are widely available and widely accepted. These procedures

have been criticized since they are not based on economical criteria such as

cost of inspection, cost of passing defectives and cost of rejecting good

products. Furthermore, these plans do not explicitly take into consideration

the past history of similar lots submitted previously for inspection purposes.

During the past thirty years a number of papers have been written dealing

with a Bayesian approach based on a cost criterion. This approach to sampling

plan design takes into account the past lot quality history. Bayesian sam-

pling plans require an explicit specification of the distribution of defectives

from lot to lot; this distribution is denoted as the prior distribution.

A summary of the theoretical foundation for selecting single sampling

plans on the basis of a prior distribution and costs is given by Hald (1960),

who also considers double sampling plans where the size of the second-stage

sample is decided before the first sample is taken. Only the decision of

whether to take a second sample is dependent upon the results of the first-

stage sample. Pfanzagl (1963) investigates double sampling plans where the

sample size and the acceptance number of the sample at the second stage de-

pend on the outcome of the first sample. lie also compares the costs of a
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double sampling plan with those of a single sampling plan. Pfanzagl and

Schiller (1970) investigate the efficiency of sequential sampling plans based

on prior distribution and costs. Multistage sampling procedures based on

prior distributions and costs are discussed by Schiller (1967). The results

are only of theoretical interest. Wortham and Wilson (1977) have considered

a backward recursive technique for optimal sequential sampling plans.

In spite of the considerable number of papers concerning this subject,

there is still a gap between the theoretical work and the application of

cost optimal Bayesian sampling plans in industries, see papers by Hoadley,

(1981), Hoadley and Buswell (1983) and Hoadley (1981). This paper considers

some pitfalls linked with the application of a sampling model based on prior

distribution and costs. Although this approach naturally takes into account

economic factors and thus seems to be superior to a risk-based sampling plan,

we shall see that it does not offer much economic gain in the majority of

situations, with the exception of the outlier model. It shall be shown

that the general model is based on such specific assumptions that in many

real cases acceptance without inspection would be the best way to handle

the lots. In order to show this, we will first present a cost model which

encompasses most of the known models based on prior distributions and costs

such as those discussed in Hald (1960), Wetherill (1960) Pfanzagl (1963)

and Wortham (1971). The model discussed here allows not only the determin-

ation of the optimal sample size n and the acceptance under c but also the

optimal stage of a sampling plan, i.e. we will determine whether a single,

double, multistage or sequential sampling plan is optimal.

Then a numerical study will reveal that under cost assumptions and

prior distributions which ensure that more than 95% of the lots are acceptable,

none of these sampling plans will be superior to acceptance without inspection,

unless our aim is to detect outlier lots with a particularly high percentage

of defectives. The conclusion offers some explanations for the weaknesses of

the models based on prior distribution and costs.

-.. -
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2. The model

2.1 The costs

Most of the papers concerning sampling plans based on prior distributions

and costs begin by assuming that costs for guarantee and repair as well as

marginal costs for sampling and rejecting an item are given. Their magni-

tude in numerical examples is chosen rather arbitrarily due to the priciple

difficulties in assigning these costs. On order to avoid undue considera-

tion of impractical cases let us consider the main economic factors which

are involved in practice and discuss our ability to measure them. The main

factors are inspecting lots, rejecting lots, passing defective items. We do

not consider extra costs for repairing defective items since all of the de-

fective items have to be repaired either during the stage of sampling or when

they are detected by the customer; these costs are constant and therefore ir-

relevant for our purposes. If there is a difference in the repair costs it

will be integrated in the costs for passing defective items. For each of

the above mentioned factors we must determine what kind of costs are appro-

priate: costs per item or costs per lot or both.

a) Costs for inspecting a lot

The costs of inspecting a lot are not strictly proportional to the

sample size n. Frequently a major part of the inspection costs is fixed.

They are based on preparing a machine which is used to inspect the items.

Consider for instance the life testing or testing of the strength of a mat-

erial. Fixed costs are incurred indirectly even when a quick glance at an

item is sufficient to determine whether it is defective or not. It is eco-

nomically significant whether a received lot from a supplier or from a pop-

ulation process within the factory is inspected or not; in the latter case
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the lot can pass directly to the production process, whereas in the former

case there will usually be a delay which causes inventory holding costs.

Some of the marginal inspection costs are difficult if not impossible to

determine. A quality control department has a restricted capacity for con-

torlling incoming lots, i.e. there is a certain manpower capacity and only

a certain number of machines are available. How to assign costs for using

these capacities is not an easy task. Costs in particular cannor be propor-

tionalized to obtain costs per item since the sample size n is not known a

priori. Hence, there remain only relatively few propertional cost factors

such as material used, electricity and the loss of the item in the case of

destructive testing.

It might be argued that fixed sampling costs are irrelevant since they

have no effect on the optimal sample size n or on the acceptance number c.

But the decision whether to take a sample at all does highly depend on the

magnitude of the fixed sampling costs. Furthermore the fixed sampling costs

are relevent in deciding whether a single, double, multistage or a sequential

sampling plan is optimal. In fact it is rather inappropriate to investigate

single, double or multistage sampling plans based on prior distribution

and costs without assuming fixed sampling costs, since it is obvious that

in the case that there are no fixed sampling costs, a sequential sampling

plan is optimal. In the following model we shall therefore consider the sit-

uation in which the sampling costs have the form

a0 + a1 n

where a0 represents the fixed costs and a, the cost per item.

b) Costs for accepting a lot with defective items

The economic consequences of undetected defective items are twofold.

First let us consider the consequences of defective items in incoming lots
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or lots from a first production stage. The defective items in accepted lots

can cause damages which might be measurable in economic terms. If the items

under consideration are to be used as parts in an assembly operation, as is

usually the case for incoming lots, the loss by accepting a defective item

may consist of costs for identifying and handling the defective item, plus

costs of disassembling and assembling the final product. More significant

might be the economic consequences of interrupting the production process,

which can be very expensive.

Secondly let us consider what happens when defective products are

shipped out. The loss by accepting defective final products and shipping

them to customers might involve guarantee costs such as service and replace-

ment costs and penalty costs for not fulfilling a contract. But these factors

are often not the most critical ones. Even more significant can be the

loss of customer goodwill. Goodwill refers to the potential loss of future

business from customers and acquaintances as a result of the inability of the

firm to satisfy the customers' expectations regarding the quality of the prod-

uct. Loss of customer cofidence caused by the poor quality of a lot can have

serious consequences not only on the future demand of the single product but

also on the success of the whole company. Manufacturers are well aware of

the value of quality reputation. Some catastrophic failures now and then have

dramatized this value. An example of a Japanese manufacturer whose share of

4 market dropped from 70% to 10% after an error which resulted in the death of

some babies is mentioned by Juran (1972).

The loss of goodwill is unfortunately very difficult to measure in econom-

ic terms. The level of lot quality that is provided is often dependent on

qualitative factors, such as the marketing objectives of the firm. Oppor-

tunity costs for the loss of goodwill cannot be considered strictly propor-

tional to the number of defecives in a lot, as most other costs can be, at
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least approximately. In fact, the loss of goodwill increases more rapidly

than proportionally to the outgoing quality level. This is due to the snow-

ball effect of loss of goodwill. A case in point: if less than 1% of a parti-

cular car have a defective vital part, it might not affect sales too much;

on the other hand, if the number of defective cars increases to over 10%,

then the drop in demand for the car in question will be drastic. This means

that loss of goodwill given 10% defectives is not simply 10 times that of

1% defectives. Consequently, it is by no means easy to assign costs per item

for accepting defective material. We will nevertheless assign costs per de-

fective item g as most authors do in order to study the implications of such

simplifications in the final section.

c) Costs of rejecting a lot

The costs of rejecting a lot depend on the economic consequences of

the rejection. Rejected lots may be sorted, reprocessed, scrapped, used

for other purposes, sold at a reduced price or returned to the supplier.

If a factory receives a product from a supplier it simply might return

the rejected lots. Returning a lot could interrupt the production process

if there is no safety stock. On the other hand, holding a safety stock for

these situations results in higher inventory holding costs. Thus costs per

lot are incurred in any case for returning a lot.

A lot which is produced within the company and rejected by the quality

controldepartment before it is shipped out is usually sorted. Besides the

costs for sorting and reworking per item there are costs per lot caused by

the delay in delivery time, which might have to be introduced as opportunity

costs. These costs are again due to a loss of customer goodwill, by which

we mean the aversion of a customer to trade with a company which has extreme

delays in delivery time. In most cases it seems therefore to be more appro-
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priate to assign costs per lot than only costs per item. In the following

model we will assume a fixed cost b0 of rejecting a lot plus a cost b, per

item for sorting.

The actual values of all the above mentioned costs are difficult, if

not impossible, to determine in practice. All the suggested approaches of

measuring the costs result in average rather than marginal costs. Moreover,

there is no basis for the measurement of penalty costs for loss of goodwill

in accounting methodology. The use of costs in quality control models has

thus not been adopted by most practitioners.

Hald (1981) has argued that the problem of determining the above me

tioned costs might be reduced to estimating the two quotients ks = a 1/gq
kr = (b 1+b0 /N)/g where N is the lot size if we restrict ourselves to a

single sampling plan. The value k is denoted as the breakeven point. Buti r

this does not solve the general problem. What are the actual values of k5

and kr? Some authors assume for convenience that kr = ks and set kr as

being equal to the average incoming quality level (AIQL), Pfanzagl (1963).

In order to clarify the problem involved in the approach based on prior

distributions and costs, we have to strictly distinguish between the classical

objective of quality control, where a process is assumed to be in control,

and the method of screening a production which is not in control. The clas-

sical "accep~ice quality control system that was developed encompassed the

concept of protecting the consumer from getting unacceptably defective mater-

ial, and encouraging the producer in the use of process quality control",

Dodge (1969). The objective of acceptance quality control is described by

Schilling (1982): "Individual sampling plans are used to protect against ir-

regular degradation of levels of quality in submitted lots below that con-
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sidered permissible by the consumer. A good sampling plan will also protect

the producer in the sense that lots produced at permissible levels of quality

will have a good chance to be accepted by the plan. In no sense, however, is

.4 it possible to inspect quality into the product."

In contrast to this classical objective, Hald (1960) considers a situation

where separating bad from good lots is the objective: "Suppose, for example,

that two manufacturing processes are available, a cheap one with a poor distri-

bution and a more expensive one with a better prior distribution. The problem

is whether to use the cheap manufacturing process and a relatively large amount

of inspection or the expensive process and a smaller amount of inspection. This

may be solved by determining the.optimum inspection procedure for each of the

two processes and afterwards selecting the process having minimum total costs.

Similar considerations may be useful for a customer who has to choose between

several suppliers, each supplier having his own market price and a correspond-

ing prior distribution". The objective here of sampling inspection is obvious-

ly to inspect quality into the product. But there are good reasons to believe

that an overall cost evaluation would yield to the conclusion that it is more

economical in the long run to keep the production process in control to meet

customers' specifications than producing or buying unacceptable quality and

screening it afterwards.

If the production process is in control, and this is a basic requirement

for instance to apply normal inspection in MIL-STD-105D, then rejecting a lot

should be a rather seldom case, say less than 5%. If the number of rejected

lots becomes too high, action has to be taken on the producer's side to imrpove

lot quality. If we take into consideration this requirement for a reasonable

sampling plan, we have to place AIQL << kr in order to obtain a rejection rate

of less than 5%. Before going into detail we will describe the stochastics

of our model.
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2.2 The stochastics

Let us examine a production process which is in control. Lots of size N

are formed from this process. The single items in the lot can be classified

as defective or non-defective through inspection by attributes. The number X

of defectives in the lot is assumed to be a random variable which varies indepen-

dently from lot to lot, but its distribution remains unchanged over time. Let

4N(X) be the prior probability that a lot of size N contains X defectives. The

incoming lots have to be judged according to whether they are acceptable or non-

acceptable before they are supplied to a production process or to a customer.

Several samples of size n. j=l,2,... can be taken from the lot in order to

estimate the lot percentage defectives. For every sample of size n. > 0 samp-

ling costs

a0 n. = 0

a0+a 1-n. n . >0

are charged.

If we have taken i samples of sizes nl,n2,...,nj and have observed Xl,x2,

...,xi defectives, then the posterior probability q(xi+1In l x l ... ,ni ,xi ,n i+ )
of the number of defectives, xi+ I in a further random sample of size n i ,

is assumed to depend upon the history (npx,...,n.9x.) only through

i i
9 n__ = n. and yi = 1 Xj,1 j=l 3 j=l

i.e. q(xi+lJnl,xl,...,ni,xi,ni+l) H q(xi+llni,Y,.ni+l) for all

0 - xi+ < ni+ I. This holds for hypergeometric sampling. After each sample

e there are three possible decisions which can be taken: accept the lot, reject

the lot, or take a further sample. If the lot is accepted, then, in addition

to the sampling costs of former samples n,, . nip costs of acceptance

" g(ni)°3(nM, )
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are incurred, where g(ni) is a nonincreasing and nonnegative function of

the cumulative samples size F-i and E[pni,yi]__ is the posterior expected value

of the fraction of defectives in the no--inspected part of the lot, given

ni.,y i and a prior distribution *N(X). A rejection of the lot results in

the following costs which are additional to the sampling costs of former

samples:

b(n i )

where b(ni) is a nonincreasing and nonnegative function of the cumulative

sample size n..

We shall consider a multistage decision problem where at every stage

a decision of accepting rejecting or sampling has to be made. Our objective

is to minimize the total expected costs for handling a lot. To be more spe-

cific we shall consider two models. In the first model, which we will refer

to as Model A, we will assume that every nonconforming item found in the

sample will be replaced by conforming items, and that the cost of this re-
placement process is absorbed into the overall manufacturing cost. Further-

more, it will be assumed that rejected lots will be screened and any non-

conforming item found will be replaced with conforming items. Hence, the

costs for such a guarantee and the costs for screening are

g"(N-n) .E[pJn.,y]

and

bl '(N-ni )

respectively, where g and b1 are costs per item. In the Model B we assume

nonconforming items found in the sample will not be replaced and if the lot

is rejected a fixed cost is charged. Hence

g -N*E [ ni, yi
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and
b
o0

are the respective costs. It turns out that Model A yields much higher

sample sizes than Model B. In fact Model A can be used as a replacement

model to find optimal screening procedures. Model A is therefore appropriate

for a manufacturer who wants to screen his own production. For a customer,

however, who gets shipments from a supplier, Model B is more appropriate,

since a customer usually will neither replace noconforming items in the

sample nor screen a rejected lot, but he will send it back to the supplier.

For the mathematical treatment of the optimization problem, we shall con-

sider a dynamic programming approach.

Let V*(n,y) be the optimal costs in state (n,y) where n is the cumula-

tive sample size and y is the number of defective items found in the sample.

AC*(n,y) denotes the optimal action (acceptance, rejection or sampling)

in state (n,y).

Furthermore, we have to determine the distribution of the number of

defectives, x, in a further sample of size m, taken from the noninspected

part of the lot, given the outcome (n,y). This distribution will be denoted

as qN(xIn,y,m). Then V*(.,.) satisfies the functional equation.

V(n,y) = min {g()E[p ln,y],b(n), f(m,n,y)}

where
m

f(m,ny) = min{a(m) + q(xln,y,m) V(nm,y~x)}
m x=O

acceptance V(n,y) = q(n)E(n,y)

AC(n,y) = rejection V(n,y) = b(n)

=I m V(n,y) = min{f(m,ny)1
m

The optimal V* and AC* shall be computed by value iteration applying
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Bellman's (1960) principle of optimality. In the dynamic programming formulation

we make use of the Markovian property of the sampling process. At any stage

the only concern is the cumulative sample size n and the number of defectives

y and not in what stage the defectives may have occurred. The probability

of having x defectives in a further sample of size m is not influenced by the

individual results of the previous samples. Hence it follows from the main

theorem of dynamic optimization that for every cumulative sample size n and

number of defectives y one can easily calculate an optimal decision AC*(i,y) by

value iteration, which might be acceptance, rejection or a further sample of

size m. But we are of course interested in the optimality of multiple (n,c)

L
plans, i.e. given n there exist acceptance and rejection numbers c and CU

depending on n such that the optimal decision IV*(n,y) is

accept the lot for y : cL(n)

_ reject the lot for y ; cU (n)
AC (n,y) =-

take a further sample

of size m(n,y) for c (n) < y < c (n)

The assumptions which have to be made such that a multiple (n,c) plan is opti-

mal are the same as in the single sampling case. Before discussing these as-

sumptions let us first consider the features of a multiple (n,c)-sampling plan.

If the sampling procedure will lead to acceptance or rejection of a lot

L u
after at most £ samples due to c2I=ck, we shall refer to an I-stage sampling

plan. Note that these multistage (n,c) sampling plans include: rejection or

acceptance of the lot without sampling: 2=0, single sampling plans: Z=1 (Hald

1960), double sampling plans: L=2 (Pfanzagl 1963), i-stage sampling plans:

k=i, sequential sampling plans: X=N (Pfanzagl and SchUler 1970). Since the

number of possible stages of a sampling plan can be assigned a priori (as

Pfanzagl and Hald do) or can be the result of an optimization procedure (as
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will be provided in this paper) we will distinguish between an optimal i-stage

sampling plan and an overall optimal sampling plan. An i-stage sampling plan

is a sampling plan where it is assumed that exactly i samples can be taken.

It is called an optimal i-stage sampling plan if there is no better sampling

plan with i or less number of samples. With this notation Pfanzagl (1963) in-

vestigated an optimal 1-stage and 2-stage sampling plans. An overall optimal

plan specifies an optimal number i* of samples which can be taken. Note that

there exist only optimal i-stage sampling plans with i < i*, and an optimal

i*-stage sampling plan is an overall optimal plan.

2.3 Optimality of multiple (nc) sampling plans

The optimality of multiple (n,c) sampling plans is based on the following

two assumptions. Let us refer to
x

F(xjn,y,m) = I q(jln,y,m)
j=0

as the posterior c.d.f. of the number of defectives in a sample of size m

given the state (n,y). In order to provide a feasible solution within the

class of (n,c)-sampling plans, the model must possess the following properties:

(i) If it is optimal to accept the lot given y defectives in a sample of

of size n, then it is optimal to accept the lot if there are y-l defec-

tives in a sample of size n.

(ii) If it is optimal to reject a lot given (n,y) then it is also optimal

to reject a lot given (n,y+l).

These two properties hold if the following two assumptions are fulfilled:

Assumption Al For all (n,y)eS , y < N, 0 ! m < N-n and 0 S x < m the inequality

F(xlnhyl,m) s F(xln,y,m)

holds.
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Assumption A2

F(xln+l,y,m) < F(xlfn,y,m)

The first assumption requires that the probability of finding more than x

defective items in a further sample of size m given (n,y) increases with y,

the number of defectives in the cumulative sample of size n. This is a rea-

sonable assumption and is met by many prior distributions. For it implies

that if a sample is of good quality a further sample is also likely to be of

good quality, or, if a sample is of poor quality, a further sample is similar-

ly likely to be poor. Notice that from Assumption (Al) it follows that

E(pl-n,y+l) >: E(n,y).

We only have to set m = N-n. The second assumption requires that the proba-

bility of finding more than x defective items in a further sample of size m

given y defectives in n is higher than that of finding more than x defective

items in a sample of size m given y defectives in n+l.

Theorem Assume the assumptions (Al) and (A2) hold, then there exists an

optimal multistage (n,c) sampling plan.

The formal proof of that theorem is given in Schneider and Waldmann (1982).

It is an extension of the well-known result in the single sampling case, where

Al and A2 have to be assumed too in order to prove an (n,c) plan to be optimal.

The assumptions hold for various distributions such as binomial, mixed binomial,

Polya and uniform, as shown by Case and Keats (1982). The assumptions are not

fulfilled for the hypergeometric distribution (Case and Keats (1982)). The bi-

nomial distribution is not an appropriate distributinon in practice since

there can be no inference drawn about the quality of the rest of the lot based

upon sample results.

The uniform distribution is very unrealistic since it is assumed that every
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possible lot fraction defective is equally likely. These two authors showed

that acceptance sampling works well with the Polya and the mixed binomial dis-

tribution. Although the figures presented by Case and Keats are impressive, the

gain through sampling should be expressed in economical terms. This is what

we will attempt to show.

2.4 The Polya distribution

The Polya p.d.f. is

r(o&+) r(a+x)r(B N-x)

x r(a)r() F(a+O N)

where N is the lot size. The average percent defectives p in a lot is

(Pfanzagl (1963)) E[pjO,O) = AIQL.

One of the reasons this distribution is considered in many papers as

a distribution for the number of defectives in a lot is mainly due to the

fact that this distribution is very easy to handle mathematically. For

this type of prior, for instance, the distribution of the number of defec-

tives in a sample of size n is (if hypergeometric sampling is used)

n r(cas) r(c+x)r(+n-x)nCX S x Rcama) rca B+n)

Thus it is again a Polya distribution. This property is referred to as "re-

producibility to hypergeometric sampling". The posterior expected value of

the fraction of defectives in a lot is then

tx

E[pln,x] = a+n

After relatively simple calculation we obtain for the expected probability

that in a sample of size n there are x defectives, given that sampling has

already produced the pair (n,y)
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S r,(a+8 n) (x() rc(o+y~x)r ($ n+m-y-x)
qCxany,m) r(8+fr-y)r(a+y) x r (+Pffl )

It can easily be seen that Assumptions (Al) and (A2) are fulfilled.

2.5 Mixed binomial distribution

The mixed binomial is a realistic prior distribution, except when it con-

sists of only one component; in this particular case, it reverts to the bi-

nomial.

The mixed binomial is applicable, for example, when 9 different machines

supply parts, with source i furnishing a proportion K, produced at process

fraction defective pi.

The mixed binomial with two components is very appropriate for modelling

a process in control with outliers. We consider the following situation.

Most often, say in 95% of all cases, the process is in control and produces

at process fraction defective p.i. There is about a 5% chance, however, that

the process will go out of control, and lots of higher percent defectives

will be produced (p2), which are usually denoted as outlier lots.

The mixed binomial distribution is given as

x i (l-Pi)N-x

0 :5 pi 5 1

w. = 1
i=l

x =

The average process fraction defectives is
Xi

AIQL = wi pi

i=l 1 1
Since the mixed binomial is reproducible to hypergeometric sampling, the
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probability of the number of defectives in a sample of size i is

X ) p.pi)n-X =
nx  = 1ix Pi CX(=o)f,..,

i..l

Furthermore, given that sampling has produced the pair (n,y), i.e. in the

cumulative sample of size n, y defectives are found, the probability of

having x=O,l,...,m defectives in a further sample of size m is

q~x-n~~m)I w m x -

Pi (-Pi)-

where
I I W pi Y(-Pi ) y

w. = w.3. 1 [ ii~lp)-

w! is denoted as the posterior probability. Given the probability w. and1 1

taking a sample of size n with y defectives in it, the expected fraction of

defectives in the noninspected part of the lot is

JEw i Pi Y+(1Pi)
n -y

y+1

E(n,y). i=1
w i PiY(l-Pi) ny

i=l wpYlp)n

2.6 The inefficiency of multiple (nc)-plans

In the following example we consider Model A in which the cost functions

are

a(n) = %0 + al.n n>O

g(T) = g-(N-n')

b(i) - bl.(N-n)

The prior distributions are taken from Pfanzagl (1963). In his paper single

'4 and double sampling plans were investigated under the assumption that there

are neither fixed costs for sampling nor sorting. The costs were ao-0 , bo-O,

and k r=ks = AIQL = 0.02. Since a0=0 a sequential sampling plan would be
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optimal. We have therefore put ao-l, the size of the unit guarantee cost g.
We notice also that the breakeven point k ris much too small. But since the

maximal gain through sampling is obtained for k r = AIQL, the efficiency of

multiple sampling plans will even decrease with increasing k r-Some examples

of multiple sampling plans are given in Table 1. We see that multiple

(n,c)-sampling plans do not offer nearly the same savings as single sampling

plans do. The savings of single sampling plans lie between 15% and 31%,

whereas the multiple sampling plan compared with single sampling plans allows

only a further reduction in costs of 1%.

Let us examine the situation where the lot size is N-800. If ct=-2 and

0=98 a 1-stage plan is optimal; if ct-=l and 0=49 a double sampling plan is

optimal. If, however, the lot size is N=400, then a single sampling plan

is optimal for a=l and $=49.

TABLE 1 Optimal multiple sampling plans for Model A

Vi I. In c I I~~~~c2 v c~ ",c2U n3C Y1 n . evitable

so 1 73, 117.141 f .os3s

*400 10 2 78 _I17.84 1 493
10 1 5.6084

@D 0S 1 120 _. 2.82 9 3132 137 4 12.77 _ _ 2 9.99S8
*00 100 2 128 2 14.28S 1AS

100S 1 173 3 23.82 113 14 2 211 6 114 14 2 1815S7 6 100 7 320.768

1630132777 23.60 __3270 7 23.59122.13

1 4 22 7 26.74 ___ _

50 1 227 42.68 134 15S2 243 7 13715S2 139 47 5 118 7 3
3003 2S7 7 6 121 7

4 261 7 42.22 3 254 7 37.9690
1 0 2 - -4 2 8 74 2 2 _ _ _ _ _

10 346 6.44 182 072

4 20743.6082

single double. 3-stage
SapigSamplinig Samping

H ____ plan Plan plan

*"Xiaai States of an optimal Mltistage SS1IaJ plan. so 1, PelYa distribution
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The 3-stage sampling plan for N=1600 reads as follows: Take a sample

of size n=114. If the number of defectives x1 in the sample is x1 =1 or less

the lot has to be accepted. If x1 =4 or more, reject the lot. If x1 =2 take

a further sample of size n2 = 181. If the number of defectives Y2=xl+x 2 in

the cumulative sample of size n2=295, is Y2=5 or less, accept the lot;

if Y2 =7 or more reject the lot and if Y2=6 take a further sample of

size 100. The lot is accepted if the number of defectives y3=xl+x 2+x3 in

the sample of size n3=n1+n2+n3 is less than or equal to 7; otherwise the lot

is rejected. If the number of defectives x1 in the first sample n1 is 3, then

another sample of size n2 =270 is taken. In this case the sampling procedure

stops after two stages. These multiple sampling plans look rather complicated

and the small savings offer no incentive to apply them. In fact, if we take

into account that in practice two thirds of the sampling costs are fixed,

then a0 will be greater than 1 and none of the multiple sampling plans will

be optimal. This illustrates that with the assumptions of our model and in

particular fixed sampling costs multiple sampling plans are not optimal.

2.7 The efficiency of single sampling plans

In Table 2 we reconsider the single sampling plans for the examples

given in Table 1. As seen in Table 2 for lot size N=400, a=l, 0=49, kr=AIQL,

the savings of a single sampling plan are 31%. But where do these savings

come from? This is easily demonstrated when evaluating the percentage of

rejected lots. In all cases about 40% of the lots are rejected. Is it there-

fore realistic to state that k r=AIQL? It is certainly not common in practice

to reject 40% of the lots as we have discussed above. In order to obtain a

realistic rejection rate of less than 5% the cost parameters have to be

such that k r>>AIQL. We should remember that here for purposes of investiga-

tion we have selected a certain prior distribution, which implies that AIQL
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is given; thus we are only able to vary the breakeven point such that a

realistic rejection rate can be achieved. In practice, however, the inverse

would be true: the breakeven point is given and we have to ensure that the

prior distribution is concentrated far below this point.

TABLE 2 Optimal sampling plans for the Polya distribution

Model A Model B

a B N Co  n c C At rej n C C* 6% rej%

2 98 400 8 78 1 6.8 is 41 22 0 7.S 7 33

800 16 128 2 13.3 17 41 31 0 14.4 9 42

1600 32 224 4 25.9 19 40 76 1 27.8 13 40

300 60 324 6 47.4 21 41 126 2 50.4 16 41

149 400 8 73 1 6.1 31 36 27 0 6.7 16 36
800 16 120 2 11.8 26 36 34 0 12.9 20 41

S600 - 32 173 3 22.8 29 37 78 1 24.4 24 38

00 60 227 4 41.7 30 37 126 2 43.9 27 37

k =0.02, AIQ-O.02, C: cost without inspection, C*: optimal costs,

A%=(O-C*)/C , rej %: percentage of rejected lots

The effect of moving the breakeven point kr to the right causes a

drastic drop in savings which result from sampling. It seems to be a trivial

result that high savings of sampling plans are due to a high percentage of

rejections. But the consequences are that even single sampling plans turn

out to be less cost efficient than Hald (1960) and Pganzagl (1963) stated, con-

cerning the model considered in this paper. In order to demonstrate this

we have selected the example N=800, a=l, B=49. Table 3 shows the savings

and rejections for different breakeven points kr. The fixed sampling costs

were placed at zero.
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TABLE 3 Optimal gain and rejection rates of single sampling plans

Model A Model B

k rej rej

0.02 26 36 20 41

0.025 16 26 11 23

0.030 9 18 S 1s

0.035; 4 11 1 8

0.040 1 6 0 0

0 0
A%=(cO-c)/C O  rej %: percentage of rejected lots

Low rejection rates imply low savings. By introducing even small fixed

sampling costs here, we realize that acceptance without rejection would

be ovtimal. This holds of course only for the Polya distribution.

The mixed binomial distribution with two components allows us to con-

struct situations where single sampling plans are very efficient and have low

rejection rates. Let us consider for example a distribution where 95% of the

lots have an average percentage defective p1=0.01 and 5% outliers with average

P2=0.27; thus AIQL=0.02 and the variance is a2.0.0019. We set k=0.04 to

separate the 5% outliers from the 95% good lots. The results for the two lot

sizes N=400 and N=1600 are presented in Table 4.

TABLE 4 Mixed binomial prior distribution

N n c C* A% rej % C* I00m ' P

400 18 1 S.76 2r 6 6.21 8

1600 32 2 20.18 37 S 22.02 9

AZ(CO-C*)/C , rej :percentage of rejected lots

C*: optimal costs, C0 : costs of acceptance without inspection

C*: costs of a Polya plan, Model B
p
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Comparing the costs C* with the costs C which amount to 18 for N=400

and 9 for N=160G, it is obvious that sampling is optimal and the gain of

sampling is very high even if there are additional fixed sampling costs.

This is not the case for multiple sampling plans. Their efficiency is less

than 1% for all mixed binomial distributions which we have considered in

our study.

We have also considered a Polya distribution with mean AIQL = 0.02

2
and variance a =0.0019. The appropriate parameters are a=0.18631 and

a=9.12942.

TABLE 5 Polya prior distribution

i C*-C*
N n C C* A% rej % C* m p 1 0 0

p m *P

400 12 0 S.83 27 15 6.08 4

1600 35 1 20.58 36 15 21.70 5

C*: opzimal costs, C*: costs of a mixed binomial plan, model Bp m

Table 5 shows that the savings assuming a Polya distribution are also high

but they are linked with high rejection rates (15%). If we try to lower

the high rejection rates we would once again obtain a low efficiency of

single sampling plans.

In the last columns of Tables 4 and 5 we have given the costs in case

we used the wrong distribution to calculate a single sampling plan. We see

that in our specific case the losses are lower if we apply a mixed binomial

plan.I
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The only model which offers any significant savings through sampling seems

to be the mixed binomial model where a high percentage of the lots is good

and a low percentage of the lots, usually denoted as outliers, is very poor.

In all other cases we may only gain by rejecting a high percentage of the

lots. But this implies a very poor prior distribution which few customers

would accept. Actions on the supplier's part to improve lot quality would

be the reaction which would be most economically sensible and thus usually

carried out in practice.

3. An empirical study of single sampling plans

In this section we shall present an empirical study of single sampling

plans with respect to their efficiency and robustness. Seven empirical dis-

tributions which were investigated in a Ph.D. thesis by Fizner (1980) form

the basis of this study. In columns 2 and 3 of Table 6 the average percentage

of defectives in a lot and the variance are given, where the entries of

column 3 have to be multiplied by 10-6 . It should be noted that the total

number of defectives in a lot is rarely known. In most practical situations

only the number of defectives in a sample is available. But even in a sit-

uation where we know the frequency of the number of defectives in a batch we

have the problem of assigning an appropriate prior distribution. Two models

to describe the data are considered: the Polya and the mixed binomial dis-

tribution. Both are based on different assumptions concerning the production

process. If we know nothing about this process as a customer, then we have

no idea which of the two distributions we should choose. Hence it is of

great interest whether the costs are sensitive with respect to the prior dis-

tribution. Firstly, the two distributions were fitted to the empirical data

as described below.
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The Polya model

Given the number of defectives xi and the frequency r. (Eri =r) we use

A ^2

= (l-p) (r. + 1) - 1
a-4 A

AA 2

8 p 2 +1) -

2

as estimates of a and 8 where

I I
p = E riX i)

2 rN-1 2 1 A

a S 2( -PrN2 ( N - 1)  x (N-i) p ( l

A
S2 r1 z k ^ 2x =  X"=I (xi-N)

A 
2

p and a are unbiased estimates of E[P] and Var[P].

The mixed binomial model with two components

We used the moment estimator for the mixtures of binomial distributions. The

factorial moments are defined as follows:

1 r x i (x i- 1)---( i (x-J+l)

V= r i=l (N- -) -(N-j+l)

j=1,2,3

Explicit formulae can be obtained (see Johnson and Kotz (1969)), for the

estimates ^ A ^ ^

A 1 1P2 P/2
p1 z A- (A -4AV 1+4V2

l -- A -1 2- 1/2
P = A + (A2-4AV +4V2 1

A (V -VV 2)/(2 v)

w A A A A
2  A

=l (V 1-P)/(p1-P2),,w2 *1-wl
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The estimates g,w lw 2 ,PlP 2 are presented in Table 6.

TABLE 6 Parameters of empirical distributions

A 
2  A A

p Cy p a 81 p1  P2

Dl 0.01608 115.5 0.67 2.187 133.797 0.85144 0.0116 0.04176

D2 0.01188 29.9 0.45 4.641 386.221 0.79801 0.0091 0.02273

D3 0.00290 5.9 0.83 1.416 486.780 0.86974 0.00196 0.00917

D4 0.00149 1.6 0.83 1.678 1126.089 0.86646 0.00104 0.00440

DS 0.00142 3.2 1.25 0.642 448.769 0.95451 0.00104 0.00956

D6 0.00173 1.1 0.63 2.592 1495.614 0.87783 0.00133 0.00460

D7 0.00581 95.3 1.67 0.347 59.280 0.85434 0.00180 0.02932

The optimal single sampling plans were first determined for kr=AIQL,

since this parameter combination involved the largest cost deviation between

a Polya and a mixed binomial distribution. We shall now mention a few inter-

esting results obtainable from Tables 7 and 8. These tables give the optimal

sampling plans and costs, the rejection rates and the costs for a mixed bi-

nomial plan if the distribution is Polya and vice'versa. The results reveal

that the costs are not very sensitive with respect to variations of the prior

unless the coefficient of variation a/E[P] becomes larger than 1. For ex-

ample, the optimal cost (C*) ffor D7 in Table 7 is 31.3 and 26.6 (C*) in
p 3

Table 8. But these are the only distributions where sampling seems to be

effective.
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TABLE 7 Optimal single sampling plans for Model B

Prior: Polya plan:
Prior: Polyaplan: Polya mixed binomial

n * C0  rej% A n c C*m

DI 342 5 130.8 160 41 18 320 7 135.3 3

D)2 293 3 108.6 118 43 8 432 6 109.9 1

D3 498 1 24.3 29 37 16 538 2 24.8 2

D 14 416 0 13.2 15 41 12 635 1 13.4 2

DS5 498 0 10.2 14 38 27 428 1 11.2 10

D)6 374 0 15.9 17 44 7 269 0 15.9 0

D7 396 2 31.3 58 27 46 340 3 32.9 S

C*: optimal costs, CO: costs of no inspection

Cm costs of the optimal mixed binomial plan, Aj6 (C 0 C*)/C0
m p

TABLE 8 Optimal sampling plans for Model B

Prior: mixed binomial, plan: Prior: mixed binomial,
mixed binomial plan: Polya

n * C rej% A% n c C* A
m 00 p 0

DI 320 7 130.6 160 19 18 342 5 135.98 4

D2 432 6 107.7 118 29 8 293 3 109.2 4

D3 538 2 24.4 29 21 16 498 1 25.2 3

4D4 635 1 13.4 15 24 11 416 0 13.7 2

DS5 428 1 11.7 14 11 16 498 0 12.7 9

D6 269 0 16.2 17 36 5 374 0 16.3 1

$D7 340 3 26.6 58 17 54 396 2 27.8 5

C*: optimal costs, C0 : costs of no inspection
m

C p: costs of the optimal pln m COC)C
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In order to lower the rejection rate we increased the breakeven point kr . The

results are presented in Table 9.

TABLE 9 Optimal gain and rejection rate for Model B

Polya Mixed Binomial

k A rej% A*% A% reji A*%

Dl 0.028 1 7 1 6 14 1

D2 0.015 1 15 1 3 21 1

D3 0.005 0.3 6 1 3 11 1

D4 0.002 1 14 1 3 13 1

D5 0.003 2 8 1 5 5 1

D6 0.002 2 23 1 2 15 1

D7 0.025 2 3 1 2 12 1

A*% gives the loss by applying the wrong distribution model

A% gives the gain of sampling

rej % is the percentage of rejected lots

The gain through sampling decreases drastically with increasing breakeven point

k r . But it decreases faster in the Polya model. In the mixed binomial model

the percentage of rejected lots is nearly constant and amounts to almost 1-w1

as long as kr lies between p1 and p 2.

For all the distributions which we considered, sampling does not seem to

be very efficient regardless of which distribution model is used. Only distri-

bution DS offers a gain of 5% along with 5% rejections if the mixed binomial
*i model is assumed. If we add only small fixed sampling costs, for example the

size of the variable sampling costs al.n, then for almost none of the considered

cases would sampling be optimal. To illustrate this, in Table 10 we have given

the optimal costs without fixed sampling costs and the variable sampling costs.
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TABLE 10 Optimal costs of single sampling plans

k C C* C* C s  0
r 0 p m p m

Dl 0.028 160.8 159.6 151.5 2.97 6.83

D2 0.015 118.8 117.8 115.4 2.36 5.36

D3 0.00S 29.0 28.9 28.2 0.60 1.69

D4 0.002 14.9 14.7 14.6 0.21 0.78

DS 0.003 14.2 14.0 13.4 0.77 1.25

"= D6 0.002 17.3 17.0 16.9 0.32 0.77

D7 0.025 58.1 56.8 57.0 2.28 3.15

,C*: optimal costs

C : costs for acceptance without sampling

Cp,Cm: variable sampling costs a1-n
p m

We have to remember that in our examples the lot sizes are very large

(10,000); hence the results hold for cases where the lot size is even more

noticeably smaller.

The sensitivity of the optimal costs with respect to the sampling plan

used was also under investigation. An evaluation of the costs as a function

of the sample size n shows that the costs are not very sensitive to changes

of the sample size.

Table 9 gives the cost deviations if the wrong distribution model is

used. Costs differ from the cost minimum by less than 1% although the samp-

ling plans are very different. For example, in the case where a Polya dis-

tribution is assumed (kr O*OIS, D2), the optimal sampling plan is n=157, c=3;

if we assume a mixed binomial distribution the optimal plan is n=357, c=6.

4. Conclusion

This paper has dealt with a sampling model based on prior distribution

aand costs, which encompasses most of the existing Bayesian models based on

costs. We pointed out the difficulties of determining the marginal costs
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which are needed for the evaluation of the model. Because of the lack of in-

formation about these costs we have suggested varying the breakeven point such

that a rejection rate is obtained which is considered reasonable in practice;

otherwise actions have to be taken to improve lot quality.

The conclusion that may be drawn from the presented study is twofold.

Firstly, we will consider the implications if our model is valid. Secondly,

since every model is only an approximation to reality, we shall consider

some of its assumptions and discuss whether they are fulfilled in practice.

Let us first assume our model is suitable for practical purposes, i.e.

we believe there is a prior distribution and piecewise linear costs can be

assigned. Taking into consideration the constraint that the percentage of

rejected lots is low, then the prior has to be centered to the extreme

left of the breakeven point kr; thus, sampling becomes only efficient in an

outlier model, i.e. where most of the lots have a good quality level and some

lots have a high percentage of defectives. To be more specific, it does not

pay to keep a sampling system running just to detect that about 5% of the lots

have a quality slightly higher than the AQL. This would contradict the assump-

tion of linear costs. The only relevant sampling plans have thus a small

sample size with a flat operations characteristic. This would support the

use of sampling plans as given in the MIL-STD-10SD "reduced inspection".

In designing a sampling plan for a new product one does not usually have

prior information; thus the use of a sampling plan with a steep OC-curve

might be appropriate. If the rejection rates are high, a discontinued phase

is advisable which involves stopping shipment of the product while the sup-

plier performs corrective action. If the rejection rate is low it does not

pay to sample with a steep OC-curve; hence the inspection should be reduced.

But in terms of linear costi, it is not optimal to choose a sampling plan
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from a table for normal inspection or even tightened inspection such as MIL-

STD-10SD and apply it regardless of how high or low the rejection rate is.

It should be clear that these results are only valid within the model we

have presented. Some assumptions of the model might not be met in practice.

The lot quality, for instance, might not be independent from lot to lot. The

assumption of a Markov process could then be more appropriate. The objective

of a sampling system is then to detect as early as possible whether the lot

quality has changed from a good to a poor quality level. A shift in the qual-

ity level should of course result in action on the supplier's side to improve

the quality rather than continuing sampling in order to screen the poor lots.

Many sampling systems are therefore designed like feedback systems.

Another critical point in our model is the assumption of linear costs.

Nonlinear guarantee costs may be more suitable in practice if loss of good-

will is taken into consideration, as pointed out earlier. It was shown by

Schneider and Werner (1981), for instance, that linear costs are not equiva-

lent to assigning an average outgoing quality limit (AOQL). This means, if

an AOQL is required, nonlinear guarantee costs are necessarily involved. Non-

linear guarantee costs could also be the reason that practitioners use sam-

pling plans with a steep OC-curve even if there are only a small number of

rejected lots.

The paper sheds new light on the economic consequences of sampling inspec-

tion. Case and Keats (1982) stated that "designer and users of these plans

should be aware of the implications associated with the selection of this

prior distribution". We might add that they should also be aware of the eco-

nomic assumptions and consequences associated with the selection of a sampling

plan.
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